LC 2015: Paper 1

Question 9 (50 marks)

Question 9 (a)
$f(t)=12 \cdot 25+4.75 \sin \left(\frac{2 \pi}{365} t\right) \leftarrow \begin{aligned} & \text { Replace } t \text { by } 76 \text { in this function and use your calculator } \\ & \text { in radian mode. }\end{aligned}$
$f(76)=12 \cdot 25+4 \cdot 75 \sin \left(\frac{2 \pi}{365} \times 76\right)=16 \cdot 835$ hours $=16$ h 50 mins
Marking Scheme Notes
Question 9 (a) [Scale 10C (0, 4, 8, 10)]
4: - Uses $t=76$
8: - Correct substitution
Note: Using $\pi=90^{\circ} \Rightarrow$ one error, but do not penalise again in (b)
Question 9 (b)
$f(t)=12 \cdot 25+4 \cdot 75 \sin \left(\frac{2 \pi}{365} t\right)=15 \leftarrow \operatorname{Put} f(t)$ equal to 15 and use your calculator to find t.
$4.75 \sin \left(\frac{2 \pi}{365} t\right)=2.75$
$\sin \left(\frac{2 \pi}{365} t\right)=\frac{2 \cdot 75}{4 \cdot 75}=\frac{11}{19}$
$t=\frac{365}{2 \pi} \sin ^{-1}\left(\frac{11}{19}\right) \approx 35.87$ days
36 days after 21st March is 26th April

Marking Scheme Notes

Question 9 (b) [Scale 10C (0, 4, 8, 10)]
4: - Correct $f(t)$

- $f(15)$ substituted

8: - Correct equation with t only
Note: Accept 35 or 36 substituted correctly and tested

Question 9 (c)

$$
\begin{aligned}
& f(t)=12 \cdot 25+4 \cdot 75 \sin \left(\frac{2 \pi}{365} t\right) \\
& f^{\prime}(t)=4 \cdot 75 \cos \left(\frac{2 \pi}{365} t\right) \times \frac{2 \pi}{365}=\frac{19 \pi}{730} \cos \left(\frac{2 \pi}{365} t\right)
\end{aligned}
$$

Formulae and Tables Book
Calculus: Integrals [page 25]

$$
\begin{aligned}
& y=\sin x \Rightarrow \frac{d y}{d x}=\cos x \\
& y=\sin f(x) \Rightarrow \frac{d y}{d x}=\cos f(x) \times f^{\prime}(x)
\end{aligned}
$$

Marking Scheme Notes

Question 9 (c) [Scale 10B (0, 5, 10)]
5: - Any correct differentiation (note: ' 0 ' could be correct differentiation here)
Note: Substituting 180° for $\pi \Rightarrow$ one error

Question 9 (d)

$f^{\prime}(t)=0 \Rightarrow \frac{19 \pi}{730} \cos \left(\frac{2 \pi}{365} t\right)=0$

I Find turning points (local maxiumum/minimum) Put $\frac{d y}{d x}=0$ and solve for x
$\cos \left(\frac{2 \pi}{365} t\right)=0$
$\frac{2 \pi}{365} t=\cos ^{-1} 0=\frac{\pi}{2}$
$t=\frac{365}{4}$
$f(t)=12 \cdot 25+4 \cdot 75 \sin \left(\frac{2 \pi}{365} t\right)$
$\therefore f\left(\frac{365}{4}\right)=12 \cdot 25+4 \cdot 75 \sin \left(\frac{2 \pi}{365} \times \frac{365}{4}\right)=12 \cdot 25+4 \cdot 75 \sin \left(\frac{\pi}{2}\right)=12 \cdot 25+4 \cdot 75=17$ hours

Marking Scheme Notes

Question 9 (d) [Scale 10D (0, 2, 5, 8, 10)] - both solutions
2: $\quad f^{\prime}(t)=0$
5: - Value of t
8: - Value of t substituted into $f(t)$

- $f(t)$ maximum when $\sin \theta=1$

Note: Accept 91 or 92 substituted and evaluated correctly for full marks

Question 9 (e)

$$
\left.\begin{array}{rl}
\bar{L} & =\frac{1}{184-0} \int_{0}^{184}\left[12 \cdot 25+4 \cdot 75 \sin \left(\frac{2 \pi}{365} t\right)\right] d t \\
& =\frac{1}{184}\left[12 \cdot 25 t-4 \cdot 75 \cos \left(\frac{2 \pi}{365} t\right) \times \frac{365}{2 \pi}\right]_{0}^{184}
\end{array} \begin{array}{l}
\begin{array}{l}
\text { FORMULAE AND TABLES Book } \\
\text { Calculus: Integrals [page 26] }
\end{array} \\
\int \sin x d x=-\cos x+c \\
\int \sin (a x+b) d x=-\frac{1}{a} \cos (a x+b)+c
\end{array}\right]
$$

$=15 \cdot 2488$ hours $=15$ hours 15 minutes

Marking Scheme Notes

Question 9 (e) [Scale 10D (0, 2, 5, 8, 10)]
2: - Correct expression in x or t

- Correct formula
- Correct limits

5: - Any correct integration
8: - Correct integration and effort at substitution
Note: Integration with one error but finished correctly gets High Partial Credit

